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An approximate method of calculating the integrated hea t - t r ans fe r  coefficients for f ree  convection 
based on cer ta in  assumptions justif ied by experiment  [1] is described.  The equations of f ree  convection 
are  analyzed in dimensionless  form.  

1. Consider an axially symmet r i c  vesse l  filled with incompress ible ,  viscous liquid, having an initial 
t empera tu re  T 0, the thermal  flux density q being specified on the surface  of the vesse l  for t > 0. The p ro -  
cess  of f ree  convection is descr ibed by the following sys t em of equations [2] : 

Ov 
0---/+ (v, grad) v = -- gra4 p + PAy -- GP ~ (T -- <T>)i 

(1.1) o1' 
divv = 0, -~- +(v, grad)T =AT 

and the following initial and boundary conditions for S" 

v It=o = o, v I~s = o, 

T=qmlo,  To= qml-- ~ 

0T 
Tlt=oO,.. ~ x~S= q 

q~ ul0 
q = q- j ,  v = - ~ -  

ah pllo ~ g~qmlo 4 V 

Here T is the dimensionless  temperature ,  T 1 is the t empera tu re  of the liquid, X is the thermal  conduc- 
tivity of the liquid, qm is the maximum value of the density ql, l0 is the charac te r i s t i c  l inear  dimension, T O 
is the dimensionless  initial t empera tu re  of the liquid, T10 is the true initial t empera tu re  of the liquid, (T} 
is the dimensionless  vo lume-average  tempera ture ,  v is the dimensionless  velocity of the liquid, t is the di-  
mensionless  t ime, t 1 is the t rue  time, a is the thermal  diffusivity of the liquid, p is the dimensionless  p r e s -  
sure ,  Pl is the t rue p res su re ,  p is the density of the liquid, i is a unit vector  directed along the accelera t ion 
of the ea r th ' s  gravi ty,  G is the Grashof number,  v is the kinematic viscosi ty,  fl is the coefficient of volume 
expansion, g is the accelera t ion of the ea r th ' s  gravi ty,  P is the Prandtl  number,  n is the normal  to the su r -  
face S defining the region ~2. 

Having written down the equation of thermal  balance and integrated this for  the initial condition 

T)l t  = 0 = To, we obtain 

Qt f v1 <T)=To+--V- ,  Q-- qdS, V- -  lo 8 
s 

Here  V t is the volume of the region occupied by the liquid. 

Let us suppose that the following conditions a re  satisfied: 

1) 

2) 

The flow of liquid is laminar ,  quas i - s ta t ionary ,  and axially symmet r i ca l  or  plane; 

the Grashof  number is much g rea t e r  than unity, and the Prandtl number is of the o rder  of unity; 

(1.2) 
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3) the whole region occupied by the liquid may  be divided into a t h e r m a l  boundary l aye r  8 thick, a 
dynamic boundary l aye r ,  and the co re  of the liquid; 

4) the flow of liquid in the core  is ideal;  

5) the t e m p e r a t u r e  of the core  equals the  v o l u m e - a v e r a g e  t e m p e r a t u r e  ( T ) ;  

6) the th ickness  of the t h e r m a l  boundary l aye r  equals the th ickness  of the dynamic boundary l ay e r ;  

7) the th ickness  of the t h e r m a l  boundary l aye r  is constant  [1]; 

8) the the rmophys ica l  p rope r t i e s  a r e  independent of t e m p e r a t u r e .  

Let  us cons ide r  the bas i s  of a ssumpt ions  (1)-(8). Assumpt ion  (2) does not s e r ious ly  r e s t r i c t  the p rob-  
l em,  s ince for  a whole s e r i e s  of l iquids (for example ,  c ryogenic  liquids such as liquid oxygen, ni t rogen,  
hydrogen,  etc. ,  as  well as a lcohols  and water)  the Prandt t  number  is of o r d e r  of unity, while the condition 
G >> 1 co r r e sponds  to developed convection. Assumpt ion  (6) is a consequence of (2); for  t ) ~ 1 the t h e r m a l  
and dynamic boundary l aye r s  coincide [3]. Assumpt ions  (5), (7), and (partially) (1 )co r respond  to the ex-  
pe r imenta l  r e su l t s  of [1], which indicate that  for  t ~ 10 -3 convect ive flow passes  into the quas i s ta t ionary  
mode,  and for  a l a rge  pa r t  of the vo lume the th ickness  of the t h e r m a l  boundary l aye r  is constant ,  while the 
t e m p e r a t u r e  of the co re  of the liquid d i f fe rs  ve ry  l i t t le  f r o m  the v o l u m e - a v e r a g e  value.  The  theore t i ca l  
model  thus cons t i tu tes  a ce r t a in  ideal izat ion of the exper imen ta l  r e su l t s .  

We seek  the t e m p e r a t u r e  field T and the veloci ty  field v in the following fo rm:  

r --- <T> + �9 (~, y) v ---- v (x, y) (1.3) 

Substituting (1.3) into (1.1) and (1.2) and using the propos i t ions  of b o u n d a r y - l a y e r  theory  [3], we 
obtain 

au a~ a~u (1.4) 

~ ~ o'-~ ( ~ 4 - )  (1.5) 
O av 

(~,Ro (~)) + R0 (~) ~ = 0 

zi yi (1.6) 

Here  xl, Yl is a coordinate  s y s t e m  connected to the su r f ace  S; the or igin of coordinates  is the point 
of in te r sec t ion  of the s y m m e t r y  axis with the lower  pa r t  of the su r f ace  of the ve s se l ;  R0(x) is the radius  of 
cu rva tu re  of the v e s s e l  c r o s s  sect ion.  

The  boundary conditions for  (1.4)-(1.6) a r e  

Ou t h ~l~=o =o, ~l~,~=0, ~ I ~ = / ,  ~ ~ = 0  ( ~ T )  
~-y~ ~=o ~a': (i ~ r,z~ (lo 7 ) 

In this  we a s s u m e  that  heat  p a s s e s  f r o m  the wall of the v e s s e l  into the boundary l aye r ,  and that  heat  
and m a s s  t r a n s f e r  then take place  f r o m  the boundary l aye r  into the core .  

He re  h is the th ickness  of the t h e r m a l  boundary layer ,  f[ is the longitudinal component  of the veloci ty  
of the co re  at the in te r face  with the boundary l a y e r  (y = 6). 

In order to solve the boundary problem (1.4)-(1.7), we use the integral-relationship method [3]. We 
seek the temperature profile in the following form: 

y , y  2 y 8 

The coeff ic ients  To, ~h, ~2, T3'  T4 a r e  found f r o m  the conditions 

"r [y=5 ~ O, 8"r ~=s -- 0, O~ t~=~ =~ 

0-7 = -  q' ~ = o =  ~ 

(1.8) 

(1.9) 
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S u b s t i t u t i n g  (1.8) in to  (1.9) we  o b t a i n  t h e  s y s t e m s  of  e q u a t i o n s  

~ 2 3 - 2 % 3 - 3 ~  3 + 4 ~ a =  o, 2T~3- 6~ a3-12Ta = ?53 

S o l v i n g  (1.10)  we  o b t a i n  

�9 o = 0.5@, ~ = --q~, ~3 = 0.Sy 83 
�9 3 -  8 ( q - -  ~6), ~a= 0.55(V5-- q) 

T h e  p r o f i l e  o f  t h e  l o n g i t u d i n a l  c o m p o n e n t  u we  s e e k  in t h e  form 

A y Y'~ 

We f ind  t h e  c o e f f i c i e n t s  A0, fl, A2 f r o m  t h e  f o l l o w i n g  c o n d i t i o n s :  

"Ou a~u ] GP@ q8 
" I . - ,5  = s , .  l.=o = o, W y=,5 = o, ~ Iv=o = "  2 

S u b s t i t u t i n g  (1.12)  in to  (1.13)  a n d  s o l v i n g  t h e  r e s u l t a n t  s y s t e m  of  e q u a t i o n s ,  we  o b t a i n  

(1.1 o) 

(1,11) 

(1.12) 

(1.1s) 

Ao = 3131 - -  1/2]~, 1: = --:hGP58q(I), A~ = --1/3 (I -t" h)  

= + [ f ( 3 y  y3~ {2y3 .V3 +)] 
u \ ~ -  - -  -~-7  3 - / z  \ p - -  8 3  - 

(1.14) 

After i n t e g r a t i n g  (1.4) and  (1.5) and  u s i n g  (1.6) and  (1.7), we o b t a i n  r e s p e c t i v e l y  

5 $ 5 
OU 

o o o 
,5 

~x f .,R3 (x) ey = q (~) (i --r~) R3 (~) 
0 

(:[ .15) 

S u b s t i t u t i n g  (1.8),  (1.11),  (1.14),  in to  (1.15) and  i n t e g r a t i n g  t h e  r e s u l t a n t  e q u a t i o n s  wi th  r e s p e c t  to x, 

we  o b t a i n  a s y s t e m  of  two  a l g e b r a i c a l  e q u a t i o n s  f o r  5 a n d  f .  

T h e  d i m e n s i o n l e s s  i n t e g r a t e d  h e a t - t r a n s f e r  c o e f f i c i e n t  N i s  c a l c u l a t e d  f r o m  

a~, 2 
N - -  qmto - -  8 

H e r e  ~ i s  t h e  i n t e g r a t e d  h e a t - t r a n s f e r  c o e f f i c i e n t .  

L e t  us  c o n s i d e r  s o m e  p a r t i c u l a r  c a s e s  o f  t h e  f o r e g o i n g  p r o b l e m .  

2. L e t  u s  c o n s i d e r  f r e e  c o n v e c t i o n  in  a t o r u s  f o r  w h i c h  a c o n s t a n t  t h e r m a l  f l u x  d e n s i t y  i s  s p e c i f i e d  

on  t h e  s u r f a c e  (F ig .  1).  In  t h i s  c a s e  

R0 (x) ~-~ l + ~rT~ + sin2x, (1) (x) = sin x, q (x) = 1, Z = 2 

T h e  e q u a t i o n  f o r  5 t h u s  t a k e s  t h e  f o r m  

_ _  a g / ~ e k 0 F 1 2  3- F1F 2 (6Pk 4 - -  Ra55kg) 3- F2252 (kloRa25S-- kl lRnPSZ Jr- 2ksRaP5 a) ~ 0 

F1 = 2k 4 - -  4ka5-  R a S a k ~ -  RaSeks 

F2 = sck3 -~- 2siSko, ka = ]/ P -~ i - -  l 

kx ----- V'W-}- i 3- 213 -- 2/3 (t~ 3-4- l)/~ 

k2 = 0.5 lf i~% l -- 0.5l~ In [(l 3- 1 / P 3- t)lZ] (2.1) 
k3 = 1.5l 3- 0.5 (t 3- 13) arc sin (I 3 3- i)-'h 

k~ = I/3 (Z2 + i )% + 1/d - -  %13 

k~ = ~/3 V 12 + l + l + 0.512 In [(t 3- ]/'[~'~+l)/l] 

k7 = 0.25s~ (k 2 3- k3), k3 = 2sa (k~ 3- k3) 
so = --i.155357t5, s~ = 0.0220238i, s 2 = 0.0684525, s 3 = --0.i7857-i0 -2 
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Fig. 1 

Here  E(z) is an elliptic integral  of the f i rs t  kind and R a is the 
Rayleigh number.  

The value of the longitudinal velocity component of the core  at the 
interface with the boundary layer  is calculated f rom the formula  

Yl 
f - -  F~ 

A solution of Eq. (2.1) on an electronic  computer  (M-20), using the 
Muller method [4], for R a = 107-10 it gave eight complex and four real  
roots ,  of which one was positive and sma l l e r  than unity. This root  was 

taken as the thickness of the thermal  boundary layer .  An analysis  of the resu l t s  showed than 5 and N were 
independent of the Prandtl  number.  After  analysis  of the resul ts ,  we obtained the equations 

N = (0.661 + 0.0357l) (Ra) ~ 

2 (2.2) 
8 = 0.66t + 0.03577 (Ba)-~ 

Here  R a = GP. 

As defining dimension in Eq. (2.2) we taken the radius of the torus .  The maximum e r r o r  in calcula-  
ting N by Eq. (2.2) is 8%. 

3. In the same way as in Section 2 we also considered the problem of f ree  convection in a sphere 
having a constant thermal  flux density specified on its surface.  As a resul t  of calculat ions analogous to 
those just  c a r r i ed  out in the range of Rayleigh numbers  107 -< R a _< l0  is we obtained the following equations: 

N =~ 1.044 (Ra)~ 5 = 1.92 (Ba) -0.~a (3.1) 

AS defining pa rame te r  in (3.1) we take the radius of the sphere.  The following a re  the values of the 
longitudinal components of the velocity of the core  f at its interface with the boundary layer  

GP = t0: iOS I0~ t0 u 
[ ~ 324.5 855.1 2t76 13360 

The values of the Nusselt number calculated f rom (3.1) for GP = 109, 10 is will respect ively  be N = 
57.5, 140; according to experimental  data [1] they are  respect ively  N = 54, 123. 

This r ecommends  Eq. (3.1) for  use in calculating the integrated hea t - t r ans fe r  coefficient for  f ree  
convection in a sphere  over  the range of Rayleigh numbers  107 -< R a __< l0  sl, 

4. In the same way as in 2 we also considered free convection in an infinite hor izontal  cyl inder  with 
a constant thermal  flux density specified on its surface.  For  R a = 107-10 n we analogously obtained the 
following equations: 

N = 0 . 7 i i  (R~)o1~% (~ = 2.81 (R~)-~.~m ( 4 . 1 )  

As defining pa rame te r  in Eqs. (4.1) we took the radius of the cylinder.  

The sa t is factory agreement  between theory and experiment for one of the eases  considered (the 
sphere) suggests  the general  validity of the model employed and recommends  the proposed method of calcu-  
lation for the range R a = 107-10 lI when calculating the integrated hea t - t r ans fe r  coefficients and t empera tu re  
distribution in the boundary layer for free convection in all axial~ symmetric vessels. 
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